Scaling limit for a class of gradient fields with nonconvex potentials


الملخص بالإنكليزية

We consider gradient fields $(phi_x:xin mathbb{Z}^d)$ whose law takes the Gibbs--Boltzmann form $Z^{-1}exp{-sum_{< x,y>}V(phi_y-phi_x)}$, where the sum runs over nearest neighbors. We assume that the potential $V$ admits the representation [V(eta):=-logintvarrho({d}kappa)expbiggl[-{1/2}kappaet a^2biggr],] where $varrho$ is a positive measure with compact support in $(0,infty)$. Hence, the potential $V$ is symmetric, but nonconvex in general. While for strictly convex $V$s, the translation-invariant, ergodic gradient Gibbs measures are completely characterized by their tilt, a nonconvex potential as above may lead to several ergodic gradient Gibbs measures with zero tilt. Still, every ergodic, zero-tilt gradient Gibbs measure for the potential $V$ above scales to a Gaussian free field.

تحميل البحث