Quantum Quenches in Extended Systems


الملخص بالإنكليزية

We study in general the time-evolution of correlation functions in a extended quantum system after the quench of a parameter in the hamiltonian. We show that correlation functions in d dimensions can be extracted using methods of boundary critical phenomena in d+1 dimensions. For d=1 this allows to use the powerful tools of conformal field theory in the case of critical evolution. Several results are obtained in generic dimension in the gaussian (mean-field) approximation. These predictions are checked against the real-time evolution of some solvable models that allows also to understand which features are valid beyond the critical evolution. All our findings may be explained in terms of a picture generally valid, whereby quasiparticles, entangled over regions of the order of the correlation length in the initial state, then propagate with a finite speed through the system. Furthermore we show that the long-time results can be interpreted in terms of a generalized Gibbs ensemble. We discuss some open questions and possible future developments.

تحميل البحث