فضاءات باناخ المزاوية للفضاء الإقليدي السوي


الملخص بالعربية

نعرف فضاء ريمان - باناخ و الفضاء الإقليدي السوي, ثم نوجد الشرط اللازم و الكافي لكي يكون فضاء ريمان - باناخ مزاويا للفضاء الإقليدي, ثم نثبت أن فضاءات ريمان - باناخ ثابتة التقوس مزاوية للفضاء الإقليدي, و أخيرا نوجد محليا القياس في فضاءات ريمان - باناخ ثابتة التقوس.

المراجع المستخدمة

Porikli, F., Tuzel, O., & Meer, P. (2016)- Designing a Boosted Classifier on Riemannian Manifolds. In Riemannian Computing in Computer Vision (pp. 281-301). Springer International Publishing
Anderson, M. T. (2015). Conformal immersions of prescribed mean curvature in R3. Nonlinear Analysis: Theory, Methods & Applications, 114, 142-157
Harandi, M., Basirat, M., & Lovell, B. C. (2016)- Coordinate Coding on the Riemannian Manifold of Symmetric Positive- Definite Matrices for Image Classification. In Riemannian Computing in Computer Vision (pp. 345-361). Springer International Publishing

تحميل البحث