الحل العددي لبعض النماذج الهامة من المعادلات التفاضلية الجزئية باستخدام طرائق تقريبية – تحليلية (ADM-VIM)


الملخص بالعربية

تركز بحثنا في هذه المقالة على دراسة طريقتي ADM – VIM و استخداميما لحل بعض النماذج الهامة من المعادلات التفاضلية الجزئية الخطية و غير الخطية مثل ( معادلة كلاين غوردن غير الخطية – معادلة الموجة غير الخطية – معادلة التلغراف الخطية – معادلة انتشار الحرارة غير الخطية )، و قد حصلنا على الحل الفعلي للمسائل المدروسة من أجل تكرارات متعددة، و قمنا بإجراء دراسة عددية عند تكرار محدد ثم قارنا الطريقتين السابقتين مع الحل الفعلي أثناء حلنا لمعادلة التلغراف و معادلة الحرارة غير الخطية، و أيضا أجرينا مقارنة بين الحل الفعلي و الحل بطريقة ADM (من أجل تكرار محدد ) لمعادلة كلاين غوردن غير الخطية، ثم قارنا بين الحل الفعلي و الحل بطريقة VIM لمعادلة الموجة غير الخطية، و في جميع الحالات حصلنا على نتائج دقيقة و فعالة أثبتت دقة و قوة و فعالية الطريقتين المدروستين .

المراجع المستخدمة

ABASSY ,T 2012 - Modified variational iteration method (non-homogeneous initial value problem) . Mathematical and Computer Modelling . Vol .55, 1222-1232p
ABDELRAZEC , A.H.M . 2008 - Adomian Decomposition Method : Convergence Analysis and Numerical Approximations . McMaster University , Canada , 58p
ALAO ,S ., AKINBORO , F. S.,AKINPELU , F.O. & ODERINU ,R .A. 2014 - Numerical Solution of Integro- Differential Equation Using Adomian Decomposition and Variational Iteration Methods . IOSR Journal of Mathematics . Vol . 10 , 18-22p

تحميل البحث