التنبّؤ بالتبخّر الإنائي الشّهري في محطّة حمص المناخيّة باستخدام الشبكات العصبيّة الاصطناعيّة


الملخص بالعربية

يعتبر التبخّر مكوّناُ أساسيّاً في الدورة الهيدرولوجيّة، و هو يلعب دوراً مؤثّراً في تطوير و إدارة الموارد المائيّة. تهدف هذه الدراسة إلى التنبّؤ بالتبخّر الإنائي الشهري في محطة حمص المناخيّة باستخدام الشبكات العصبيّة الاصطناعيّة. و قد اعتمدت الدراسة من أجل ذلك على القيم الشهريّة لدرجة حرارة الهواء و الرطوبة النسبيّة فقط كمدخلات، واعتمدت التبخّر الإنائي الشهري كمُخرج للشبكة. استُخدمت خوارزميّة الانتشار العكسي في عمليّة تدريب و تحقيق الشبكة مع تغيير طرائق التدريب و عدد الطبقات الخفيّة و عدد العصبونات في كل طبقة منها، و قد أظهرت النتائج القدرة الجيّدة للشبكة العصبيّة الاصطناعيّة ذات الهيكليّة 2-10-1 على التنبؤ بقيم التبخر الإنائي الشهري بمعامل ارتباط كلّي R) 96.786%) و بجذر متوسّط مربّعات الأخطاء RMSE) 24.52 mm/month) لمجموعة البيانات الكاملة، و قد أوصت الدراسة باستخدام تقنية الشبكات العصبية الاصطناعية لتحديد العناصر الأكثر تأثيراً على التبخر.

المراجع المستخدمة

ESLAMIAN, S. S; GOHARI, S. A; BIABANKI, M; MALEKIAN, R; Estimation of Monthly Pan Evaporation Using Artificial Neural Networks and Support Vector Machines. Journal of Applied Sciences 8 ,19, 2008, 3497-3502
BOROOMAND-NASAB, B; JOORABIAN, M. Estimating Monthly Evaporation Using Artificial Neural Networks. Journal of Environmental Science and Engineering, 5, 2011, 88-91
KUMAR, P; TIWARI, A. K. Evaporation Estimation Using Artificial Neural Network. International Journal of Computer Theory and Engineering, Vol. 4, No. 1, 2012

تحميل البحث