طريقة شرائحية بثلاثة وسطاء تجميع لحل مسائل في المعادلات التفاضلية المعممة من المرتبة التاسعة خاضعة لشروط حدية


الملخص بالعربية

يتم في هذا العمل استخدام كثيرات حدود شرائحية من الدرجة الحادية عشرة مع ثلاث نقاط تجميع لتطوير طريقة لحساب الحل العددي و مشتقاته حتى المرتبة التاسعة لمسائل القيم الحدية الخطية و غير الخطية في المعادلات التفاضلية المعممة من المرتبة التاسعة. تبين الدراسة أن الطريقة الشرائحية المقترحة عندما طُبِقتْ بثلاث نقاط تجميع لهذه المسائل كانت موجودة و معرفة بشكل وحيد. كما تظهر الدراسة التحليلية للتقارب أن الطريقة المقترحة مستقرة و متناسقة من الرتبة الحادية عشرة و تملك معدل تقارب يزيد عن ستة. كما تم اختبار الطريقة الشرائحية بحل بعض المسائل التطبيقية، إذ تشير المقارنات لنتائجنا مع نتائج عددية لبعض الطرائق المذكورة في مراجع أخرى حديثة إلى أفضلية النتائج التي توصلنا إليها من حيث الاستقرار و الدقة العددية.

المراجع المستخدمة

(ALI J., S. ISLAM, H. KHAN, and Syed Inayat Ali Shah, The Optimal homotopy asymptotic method for the solution of higher-order boundary value problems in finite domains, Abstract and Applied Analysis, Vol. 2012, Article ID 401217, 1-14(2012
Hassan H. Abdel-Halim, Vedat Suat Ertürk, Solutions of Different Types of the linear and Non-linear Higher-Order Boundary Value Problems by Differential Transformation Method, Eur. J. Pure Appl. Math, Vol.2,No 3 (2009), 426-447
Hassan H. Abdel-Halim, Mohamed I. A. Othman and A. M. S. Mahdy, Variational Iteration Method for Solving Twelve Order Boundary Value Problems, Int. Journal of Math. Analysis, Vol. 3, 2009, no. 15, 719 – 730

تحميل البحث