خوارزميتان متوازيتان فعالتان لحل جمل المعادلات الخطية خماسية الأقطار المتناظرة


الملخص بالعربية

في هذه المقالة، نصف خوارزميتين متوازيتين لإيجاد حل جمل المعادلات الخطية خماسية الأقطار المتناظرة المربعة من المرتبة. تتطلب الخوارزميتين معالجاً و كل معالج يمتلك ذاكرة موضعية. تتضمن الخوارزمية الأولى كتابة المصفوفة خماسية الأقطار على شكل جداء مصفوفتين كل منهما مصفوفة ثلاثية الأقطار. اقترحنا لحل جمل المعادلات الخطية ثلاثية الأقطار الناتجة خوارزمية متوازية. أما الخوارزمية الثانية فتتضمن تحليل المصفوفة خماسية الأقطار وفق شكل ما بحيث يمكن تنفيذ جمل المعادلات الناتجة وفق خوارزمية متوازية. أجرينا العديد من تجارب المحاكاة العددية لتوضيح فعالية، و سرعة، و دقة الخوارزميتين المقترحتين لحل جمل المعادلات الخطية خماسية الأقطار المتناظرة المدروسة. تبين من التجارب العددية أنّ الخوارزميتين فعّالتين و أن إحداهما أسرع من الأخرى بمرتين لحل نفس مسائل الاختبار.

المراجع المستخدمة

C.W. Groetsch, J.T. King, Matrix Methods and Applications, Prentice Hall, Englewood Cliffs, NJ, 1988
A. Quarteroni, R. Sacco and F. Saleri, Numerical Mathematics, Springer-Verlag, 2000
Arnt H. Veenstra, H.X. Lin and E.A.H. Vollebregt, A comparison of scability of different parallel iterative methods for shallow water equations, Contemp. Math. 218 (1998) 357–364

تحميل البحث