تقدير التّبخر- نتح المرجعي الشَّهري في منطقة صافيتا باستخدام الشَّبكة العصبيَّة الصنعيَّة


الملخص بالعربية

يشكّل التبخر-نتح أحد عناصر الدورة الهيدرولوجية، الذي يصعب قياس كمياته الفعلية في الشروط الحقلية، لذلك يجري تقديره انطلاقاً من علاقات تجريبية تعتمد على بيانات عناصر المناخ، و تتضمن تلك التقديرات أخطاء متنوّعة بسبب عمليات التقريب. و يهدف البحث إلى تقدير دقيق لكمية التبخر الشهري في منطقة صافيتا, و يعتمد البحث على تقانة الشبكة العصبية الصنعية، حيث بُني الأنموذج الرياضي باستخدام Neural Fitting Tool (nftool) إحدى أدوات الماتلاب، و اعتمد الأنموذج على البيانات الشهرية لدرجة حرارة الهواء و الرطوبة النسبية في محطة صافيتا، كما استُخدِمت بيانات التبخر الشهري من حوض التبخر الأميركي صنف A لغرض التحقق من صحة أداء الشبكة، بعد تحويل الأنموذج إلى شكل قالب جاهز باستخدام تقانة Simulink المتاحة في حزمة برمجيات الماتلاب. أثبتت نتائج الدراسة أنَّ الشبكة العصبية الصنعيَّة متعددة الطبقات، و ذات الانتشار العكسي للخطأ تعطي نتائج جيدة في تقويم التبخر الشهري، اعتماداً على مجموعة البيانات المستخدَمة.

المراجع المستخدمة

DOORENBOS, J.; PRUITT, W.O. GuideLines for Predicting Crop Water Requirement. Food and Agriculture Organization of the United Nations (FAO).  N .24,1977,156
RAGHUWANSHI, N.S.; WALLENDER, W.W. Converting from pan Evaporation to Evapotranspiration. Journal of Irrigation and Drainage Engineering. Vol. 124, 1998, 275-277
FAO Corporate Document Repository. Crop Evapotranspiration. Natural Resources Management and environment Department, 2008

تحميل البحث