يشكّل التبخر أحد عناصر الدورة الهيدرولوجية، الذي يصعب قياس كمياته الفعلية في الشروط الحقلية، لذلك يجري تقديره اعتماداً على الحسابات بعلاقات تجريبية تعتمد على بيانات عناصر المناخ. يهدف البحث إلى بناء أنموذج رياضي لتقدير التبخر الشهري في المنطقة السهلية من الساحل السوري، و ذلك باستخدام الشبكات العصبية الصنعيَّة اعتماداً على درجة الحرارة فقط. و إجراء دراسة مقارنة بين نتائج أنموذج الشبكة و نتائج نماذج أخرى معروفة. بُني الأنموذج الرياضي باستخدام NN-tool box إحدى أدوات MATLAB حيث شكلت شبكة عصبية صنعيَّة متعددة الطبقات لخوارزمية الانتشار العكسي للخطأ، و حُددت خوارزمية التعلم الملائمة، و عدد الطبقات الخفية المستخدمة، بالإضافةً إلى عدد العصبونات و نوع دوال التفعيل المستخدمة في كل طبقة. و قد أظهرت النتائج أن الشبكة العصبية الصنعيَّة ذات الهيكلية (1-9-1) تعطي أقل قيمة لمربع متوسط الخطأ لمجموعة التحقق و يساوي 0.0032، مع استخدام دالتي التفعيل Logsigmoid و Linear على الترتيب في الطبقة الخفية و طبقة الإخراج. كما طُوِّر أنموذج المحاكاة للنتائج المستحصلة من الشبكة العصبية الصنعيَّة المقترحة مع نماذج أخرى مثل معادلة إيفانوف و ذلك باستخدام تقانة (Simulink). تبين أن الشبكة العصبية الصنعيَّة المعتمدة على درجة الحرارة فقط تعطي نتائج أكثر دقة من معادلة إيفانوف في تقدير التبخر.