تعتبر جدولة المهام على المعالجات-المتعددة من أهم المسائل المدروسة لجعل المعالجات تعمل من دون أزمنة تأخير، و بالتالي تقليل الزمن الكمي اللازم لإتمام المهام. هذا الأمر جعل الاهتمام يتركز على مسألة الجدولة و خوارزمياتها، و خاصة في أنظمة المعالجات المتعددة التي تحتاج لترتيب المهام عمليا من أجل تنفيذها بشكل أمثل. في هذا البحث، تمت دراسة مسألة الجدولة الستاتيكية لمهام المستقلة على نظام معالجات-متعدد متماثلة، و عرض خوارزمية اعتماداً على أمثة جماعة النحل، و حل مسألة الجدولة باستخدامها، و مقارنتها مع خوارزمية سابقة قد استوحيت من سلوك النحل لنفس الغرض و مع الحل الأمثل لمسألة الجدولة المعروضة. إن الهدف من الخوارزمية هو إيجاد حل مقبول ذي زمن أصغريّ من خلال خوارزمية جماعة النحل، و دراسة تأثير زيادة عدد المهام عند ثبات عدد المعالجات، و تأثير زيادة عدد هذه المعالجات-من أجل عدد من المهام-على ثبات الخوارزمية المعروضة. لقد أوضحت دراسة الخوارزمية المفروضة قدرتها على الحصول على قيمة مثلى لدالة الهدف في اختبارات مسائل جدولة ذات حجم صغير و متوسط. لقد بينت النتائج أن الخوارزمية المفروضة تنتج حلاً أمثل لمسألة الجدولة في أغلب الحالات، و تحسن الخوارزمية التقليدية لأمثلة جماعة النحل.