يتم إنشاء ملايين علامة التجزئة على وسائل التواصل الاجتماعي كل يوم لإرشاد الرسائل المتعلقة بموضوعات مماثلة. لمساعدة الناس على العثور على الموضوعات التي يرغبون في مناقشتها، تقوم هذه الورقة بتفضيل تفضيلات Hashtaginging للمستخدم عبر التنبؤ بمدى المرجح أن ينشرها مع علامة التجزئة. يتم افتراض أنه يرتبط اهتمامات المرء في علامة التجزئة بما قالها قبل (سجل المستخدم) ووظائف المشاركات الحالية التي تقدم علامة التجزئة (سياقات Hashtag). هذه العوامل متزوجة في المساحة الدلالية العميقة التي بنيت برت مدرب مسبقا ونموذج موضوع عصبي عبر التعلم المتعدد. وبهذه الطريقة، يمكن تخصيص اهتمامات المستخدم المستفادة من الماضي لتتناسب مع علامة التصنيف المستقبلية التي تتجاوز قدرة الأساليب الموجودة على افتراض أن دلالات البحث في هاشتاج دون تغيير. علاوة على ذلك، نقترح انتباه موضوع شخصي مخصص رواية لالتقاط محتويات بارزة لتخصيص سياقات HASHTAG. تشير التجارب على مجموعة بيانات Twitter واسعة النطاق إلى أن نموذجنا يتفوق بشكل كبير على نهج توصية الحديث عن الفن دون استغلال موضوعات كامنة.