عدم اليقين - موازنة لتدريب ترجمة الآلات العصبية متعددة اللغات ومتعددة اللغات


الملخص بالعربية

تعلم نموذج الترجمة متعددة اللغات ومتعدد اللغات يمثل تحديا لأن البيانات غير المتجانسة والمخطورة تجعل النموذج تتلاقص بشكل غير متسق على مختلف كوربورا في العالم الحقيقي. تتمثل هذه الممارسة الشائعة في ضبط حصة كل جثة في التدريب، بحيث يمكن أن تستفيد عملية التعلم الحالات المتوازنة والموارد المنخفضة من الموارد العالية. ومع ذلك، عادة ما تعتمد أساليب موازنة التلقائي عادة على الخصائص داخل ومشتركة بين البيانات، والتي عادة ما تكون غير مرغقة أو تتطلب من الشاورات البشرية. في هذا العمل، نقترح نهجا، مواد متعددة، أن ضبط استخدام بيانات التدريب بشكل حيوي استنادا إلى عدم اليقين في النموذج على مجموعة صغيرة من البيانات النظيفة الموثوقة للترجمة متعددة الكائنات. نحن تجارب مع فئتين من تدابير عدم اليقين في تعدد اللغات (16 لغة مع 4 إعدادات) وإعدادات متعددة النجانات (4 للمجال في المجال و 2 للخارج على الترجمة الإنجليزية-الألمانية) وإظهار نهجنا متعدد الاستخدامات بشكل كبير خطوط الأساس، بما في ذلك الاستراتيجيات الثابتة والديناميكية. نقوم بتحليل النقل عبر المجال وإظهار نقص الأساليب القائمة على الاستقرار والمشاكل.

المراجع المستخدمة

https://aclanthology.org/

تحميل البحث