تكبير البيانات الاصطناعية للحصول على السؤال الصفر لقطة


الملخص بالعربية

إلى جانب توفر مجموعات بيانات واسعة النطاق، مكنت هياكل التعلم العميق التقدم السريع في مهمة الإجابة على السؤال.ومع ذلك، فإن معظم مجموعات البيانات هذه باللغة الإنجليزية، وأدائيات النماذج متعددة اللغات الحديثة أقل بكثير عند تقييمها على البيانات غير الإنجليزية.نظرا لتكاليف جمع البيانات العالية، فهي ليست واقعية للحصول على بيانات مشروحة لكل لغة رغبة واحدة لدعمها.نقترح طريقة لتحسين السؤال المتبادل الإجابة على الأداء دون الحاجة إلى بيانات مشروح إضافية، واستفادة نماذج توليد السؤال لإنتاج عينات اصطناعية في أزياء متصلة.نظهر أن الطريقة المقترحة تتيح التوفيق بشكل كبير على خطوط الأساس المدربين على بيانات اللغة الإنجليزية فقط.نبلغ عن أحدث طرف جديد في أربع مجموعات بيانات: MLQA و Xquad و Squad-It و PIAF (FR).

المراجع المستخدمة

https://aclanthology.org/

تحميل البحث