تقدير الجودة القائم على التصنيف: نماذج صغيرة وفعالة لتطبيقات العالم الحقيقي


الملخص بالعربية

يتم وضع تقدير الجودة على مستوى الجملة (QE) من الترجمة الآلية بشكل تقليدي كملقمة الانحدار، ويتم قياس أداء نماذج QE عادة بواسطة ارتباط بيرسون مع ملصقات بشرية. حققت نماذج QE الأخيرة مستويات ارتباطا غير مرئي مسبقا بأحكام بشرية، لكنها تعتمد على نماذج لغوية محلية متعددة اللغات الكبيرة باهظة الثمن بشكل حسابي وجعلها غير ممكنة لتطبيقات العالم الحقيقي. في هذا العمل، نقوم بتقييم العديد من تقنيات ضغط النماذج ل QE والعثور على ذلك، على الرغم من شعبيتها في مهام NLP الأخرى، فإنها تؤدي إلى ضعف الأداء في وضع الانحدار هذا. نلاحظ أن هناك حاجة إلى معلمة نموذجية كاملة لتحقيق نتائج SOTA في مهمة الانحدار. ومع ذلك، فإننا نجادل بأن مستوى التعبير عن نموذج في مجموعة مستمرة غير ضرورية لإحضار تطبيقات المصب في QE، وإظهار أن إعادة صياغة QE كمشكلة تصنيف وتقييم نماذج QE باستخدام مقاييس التصنيف من شأنها أن تعكس أدائها الفعلي بشكل أفضل في الواقع تطبيقات العالم.

المراجع المستخدمة

https://aclanthology.org/

تحميل البحث