على سبيل المثال - التدريب التكيفي مع خسائر قوية ضد الضوضاء ضد الملصقات الصاخبة


الملخص بالعربية

من أجل تخفيف الطلب الكبير على مجموعات البيانات المشروح للمهام المختلفة، اعتمدت العديد من مجموعات بيانات معالجة اللغات الطبيعية الحديثة خطوط أنابيب آلية للبيانات القابلة للاستخدام السريع. ومع ذلك، فإن التدريب النموذجي مع مثل هذه البيانات يشكل تحديا لأن أهداف التحسين الشائعة ليست قوية لتسمية الضوضاء الناجمة عن عملية توليد التوضيحية. تم اقتراح العديد من الخسائر القوية للضوضاء وتقييمها في المهام في رؤية الكمبيوتر، لكنها تستخدم عموما فرط DataSet-WiseParamter واحد للتحكم في قوة مقاومة الضوضاء. يقترح هذا العمل أطر تدريبية جديدة على سبيل المثال لتغيير فرط بيانات DataSet واحد من مقاومة الضوضاء في مثل هذه الخسائر لتكون مثالا. توقع هؤلاء مثيل - Hyperparameters مقاومة للضوضاء من خلال تنبؤات ذات جودة عالية على مستوى التصنيف، والتي يتم تدريبها مع نماذج التصنيف الرئيسية. تظهر تجارب مجموعات بيانات NLP الصاخبة والفساد أن أطر التدريب على سبيل المثال المقترحة على سبيل المثال تساعد في زيادة متانة الضوضاء التي توفرها هذه الخسائر، وتعزيز استخدام الأطر والأطر الخسائر المرتبطة بها في نماذج NLP المدربة مع بيانات صاخبة.

المراجع المستخدمة

https://aclanthology.org/

تحميل البحث