تدوين المعرفة المنطقية في الآلات هو هدف طويل الأطول من الذكاء الاصطناعي. في الآونة الأخيرة، تم إحراز تقدم كبير نحو هذا الهدف مع تقنيات بناء قاعدة المعرفة التلقائية (KB). ومع ذلك، فإن هذه التقنيات تركز في المقام الأول على اكتساب بيانات KB الإيجابية (TRUE)، على الرغم من أن البيانات السلبية (الخاطئة) غالبا ما تكون مهمة أيضا للمنطق التمييزي على متن العموم KBS. كخطوة أولى نحو الأخير، تقترح هذه الورقة NEGATER، وهو إطار يصنف السلبيات المحتملة في العمولة KBS باستخدام نموذج لغة سياقي (LM). الأهم من ذلك، حيث لا تحتوي معظم KBS على السلبيات، تعتمد Negater فقط على المعرفة الإيجابية في LM ولا تتطلب أمثلة سلبية للحقيقة. توضح التجارب أنه مقارنة بنهج تكبير البيانات المتعاقبة متعددة النزاع، فإن نطاط غلة السلبيات التي تعتبر أكثر حكما متماسكا ومفيدا --- تؤدي إلى تحسينات دقة ذات دلالة إحصائية في مهمة استكمال KB صعبة وتؤكد أن المعرفة الإيجابية في LMS يمكن إعادة -العرضة "لتوليد المعرفة السلبية.