استخراج، Denoise وفرضه: تقييم وتحسين الحفاظ على المفهوم لجيل النص إلى النص


الملخص بالعربية

تفترض الدراسات المسبقة عن جيل النص إلى النص عادة أن النموذج يمكن أن يكتشف ما هو الحضور في المدخلات وما يجب تضمينه في الإخراج عبر التعلم SEQ2SEQ، مع فقط بيانات التدريب الموازي وليس هناك إرشادات إضافية. ومع ذلك، لا يزال غير واضح ما إذا كانت النماذج الحالية يمكن أن تحافظ على مفاهيم مهمة في مدخلات المصدر، حيث لا يكون لتعلم SEQ2SeQ تركيز صريح على المفاهيم ومقاييس التقييم الشائعة الاستخدام تعاملها بنفس القدر من الأهمية بنفس القدر من الأهمية. في هذه الورقة، نقدم تحليلا منهجيا يدرس ما إذا كانت نماذج SEQ2SEQ الحالية، خاصة نماذج اللغة المدربة مسبقا، جيدة بما يكفي للحفاظ على مفاهيم الإدخال المهمة وإلى أي مدى توجيه الجيل الصريح مع مفاهيم القيود المعجمية مفيدة. نجيب على الأسئلة المذكورة أعلاه من خلال إجراء تجارب تحليلية مكثفة على أربع مهام توليد نصية ممثلة للنص. بناء على الملاحظات، فإننا نقترح بعد ذلك إطارا بسيطا بعد فعالا لاستخراج مفاهيم الإدخال والانحدار وفرضها تلقائيا كقيود معجمية. تؤدي هذه الطريقة الجديدة بشكل مبادل أو أفضل من نظيرها غير المقيد في المقاييس التلقائية، ويوضح تغطية أعلى للحفاظ على المفهوم، وتتلقى تصنيفات أفضل في التقييم البشري. يتوفر الكود الخاص بنا في https://github.com/morningmoni/ede.

المراجع المستخدمة

https://aclanthology.org/

تحميل البحث