تهدف توليد السؤال الطبيعي (QG) إلى توليد أسئلة من مقطع، ويتم الرد على الأسئلة التي تم إنشاؤها من المقطع.معظم النماذج مع نموذج الأداء الحديث النص الذي تم إنشاؤه سابقا في كل خطوة فك التشفير.ومع ذلك، (1) يتجاهلون معلومات الهيكل الغني المخفية في النص الذي تم إنشاؤه سابقا.(2) يتجاهلون تأثير الكلمات المنسوخة على مرور.ندرك أن المعلومات في الكلمات التي تم إنشاؤها مسبقا بمثابة معلومات مساعدة في الجيل اللاحق.لمعالجة هذه المشكلات، نقوم بتصميم وحدة فك الترميز المستندة إلى شبكة الرسم البياني للتكرار (IGND) لنموذج الجيل السابق باستخدام شبكة عصبية رسم بيانية في كل خطوة فك التشفير.علاوة على ذلك، يلتقط نموذج الرسم البياني لدينا علاقات التبعية في المقطع الذي يعزز الجيل.توضح النتائج التجريبية أن نموذجنا يتفوق على النماذج الحديثة مع مهام QG على مستوى الجملة على مجموعات بيانات الفريق وماركو.