تصف هذه الورقة نموذجا مدمجا وفعالا لاسترجاع مرور الكمون المنخفض في البحث عن المحادثة بناء على تمثيلات كثيفة علمية. قبل عملنا، يستخدم النهج الواحد من بين الفنون خط أنابيب متعدد المراحل يشتمل على وحدات إعادة صياغة استعلام محادثة واسترجاع المعلومات. على الرغم من فعاليته، غالبا ما يتضمن هذا الخط الأنابيب نماذج عصبية متعددة تتطلب أوقات الاستدلال الطويلة. بالإضافة إلى ذلك، تحسين كل وحدة بشكل مستقل يتجاهل التبعيات بينهم. لمعالجة هذه العيوب، نقترح دمج إعادة صياغة استعلام المحادثة مباشرة في نموذج استرجاع كثيف. للمساعدة في هذا الهدف، نقوم بإنشاء مجموعة بيانات مع ملصقات ذات صلة زائفة للبحث عن المحادثة للتغلب على عدم وجود بيانات تدريب واستكشاف استراتيجيات تدريب مختلفة. نوضح أن نموذجنا يعيد كتابة استعلامات المحادثة بشكل فعال كتمثيلات كثيفة في البحث عن المحادثة والفتح عن نطاق البيانات. أخيرا، بعد مراعاة أن طرازنا يتعلم ضبط نموذج L2 من Arquer Token Ageddings، فإننا نستفيد من هذه الخاصية لاسترجاع الهجين ودعم تحليل الأخطاء.