حققت شبكات الخصومة التوليدية (GANS) نجاحا كبيرا في توليف الصور، لكنه أثبت أنه من الصعب توليد لغة طبيعية. التحديات تنشأ من إشارات التعلم غير المنفصلة التي تم تمريرها من التمييز. وبعبارة أخرى، فإن إشارات التعلم السيئة تحد من قدرة التعلم لتوليد اللغات مع الهياكل والدلالات الغنية. في هذه الورقة، نقترحنا اعتماد طريقة التعلم المضاد للتعبير (CCL) لدعم تدريب المولد في محكمة اللغات. على النقيض من الجنانيين القياسيين الذين يعتمدون مصنف ثنائي بسيط للتمييز عما إذا كانت العينة حقيقية أو مزيفة، فإننا نوظف إشارة تعليمية مضادة للتناقض التي تقدم تدريبا على تدريب أجهزة اللغات بواسطة (1) سحب تمثيلات اللغة للعينات الناتجة والرصيصة معا و (2) دفع تمثيلات العينات الحقيقية للتنافس مع التمييز وبالتالي تمنع التمييز عن التمييز. نقيم طريقتنا على كل من المعايير الاصطناعية والحقيقة وتحصل على أداء تنافسي مقارنة بالجنطات السابقة لتوليد التسلسل الخصم.