تظهر نماذج التعلم العميق تفضيلات للتركيب الإحصائي بشأن التفكير المنطقي.قد يتم حفظ الارتباطات الزائفة عند وجود تحيز إحصائي في بيانات التدريب، مما يحد بشدة من أداء النموذج بشكل خاص في سيناريوهات البيانات الصغيرة.في هذا العمل، نقدم إطار تدريب عدائي مضاد للأرض (القط) لمعالجة المشكلة من منظور السببية.خاصة، بالنسبة لعينة محددة، تنشئ القط أولا تمثيل مضاد من خلال الاستيفاء الفضائي الكامن بطريقة مخفية، ثم يؤدي ذلك إلى تقليل المخاطر المضادة (CRM) على كل زوج مضاد للأصلية لضبط وزن الخسارة العينة بشكل حيوي، مما يشجع النموذجلاستكشاف التأثير السببي الحقيقي.توضح تجارب واسعة أن القط يحقق تحسين أداء كبير على سوتا عبر المهام المختلفة المصب، بما في ذلك تصنيف الجملة، والاستدلال باللغة الطبيعية والرد على السؤال.