Hyperexpan: توسيع التصنيف مع التعلم التمثيل القطعي


الملخص بالعربية

تعد التصنيفات موارد قيمة للعديد من التطبيقات، ولكن التغطية المحدودة بسبب عملية العمالة اليدوية باهظة الثمن تعوق إمكانية تطبيقها العام. محاولة Works السابقة لتوسيع تصنيفات الأدتصات الموجودة تلقائيا لتحسين تغطيتها من خلال تضمين التعلم بمشاركة مفهوم في الفضاء الإقليدية، في حين أن التصنيفات، التسلسل الهرمي بطبيعتها، محاذاة بشكل طبيعي مع الخصائص الهندسية للفضاء القطعي. في هذه الورقة، نقدم HyperExpan، خوارزمية توسيع تصنيفية تسعى إلى الحفاظ على هيكل التصنيف في مساحة أكثر تعبيرا معبرة وتتعلم أن تمثل المفاهيم وعلاقاتها مع شبكة عصبية خاطئة (HGNN). على وجه التحديد، ترفع Hyperexpan تضمينات الموضع لاستغلال هيكل التصنيفات الموجودة، وتميز معلومات ملف تعريف المفهوم لدعم الاستدلال على مفاهيم جديدة غير مرئية أثناء التدريب. تشير التجارب إلى أن Hyperexpan المقترح تفوق النماذج الأساسية بنماذج أساسية مع التعلم التمثيلي في مساحة ميزة Euclidean وتحقق أداء حديثة على معايير التوسع التصنيفية.

المراجع المستخدمة

https://aclanthology.org/

تحميل البحث