غالبا ما تنطوي النماذج الحسابية للغة البشرية على مشاكل في الحركة. على سبيل المثال، قد تهميش محلل احتمامي على العديد من الأشجار بشكل كبير لجعل التنبؤات. غالبا ما تستخدم الخوارزميات لمثل هذه المشكلات البرمجة الديناميكية وليست فريدة من نوعها دائما. يمكن أن يكون العثور على واحد مع وقت تشغيل مقارب مثالي غير محدد، ويستغرق وقتا طويلا، وعرضة خطأ. يهدف عملنا إلى أتمتة هذه العملية الشاقة. بالنظر إلى برنامج إعلاني صحيح أولي، فإننا نبحث عن تسلسل من التحولات التي تحافظ على الدلالات لتحسين وقت التشغيل قدر الإمكان. تحقيقا لهذه الغاية، وصفنا مجموعة من تحويلات البرامج، وهي مترية بسيطة لتقييم كفاءة البرنامج المحول، وإجراءات البحث المثيرة لتحسين هذه المترية. نظهر أنه في الممارسة العملية، البحث الآلي - - مثل البحث العقلي الذي يؤديه مبرمجات البشر --- يمكن العثور على تحسينات كبيرة في البرنامج الأولي. تجريبيا، نظرا لأن العديد من عمليات السرعة الموصوفة في أدب NLP قد تم اكتشافها تلقائيا من خلال نظامنا.