مع زيادة الطفرة الأخيرة في التطبيقات الاجتماعية التي تعتمد على الرسوم البيانية المعرفة، أصبحت الحاجة إلى التقنيات لضمان الإنصاف في الأساليب القائمة على KG واضحة بشكل متزايد. أظهرت الأعمال السابقة أن كلية كجمها عرضة للحيوانات الاجتماعية المختلفة، وقد اقترحت طرق متعددة لدخاناتها. ومع ذلك، في مثل هذه الدراسات، كان التركيز على تقنيات deviasing، في حين يتم تحديد العلاقات التي ستكون degiased يدويا من قبل المستخدم. نظرا لأن المواصفات اليدوية هي نفسها عرضة للتحيز الإدراكي البشري، فهناك حاجة إلى نظام قادر على قياس وفضح التحيزات، التي يمكن أن تدعم قرارات أكثر استنارة بشأن ما له ديبي. لمعالجة هذه الفجوة في الأدب، وصفنا إطارا لتحديد التحيزات الموجودة في Adments Graph Admings، بناء على مقاييس BIAS الرقمية. نوضح الإطار بثلاث تدابير تحيز مختلفة حول مهمة التنبؤ بالمهنة، ويمكن امتدت بمرونة لتعريفات وتطبيقات إضافية. يمكن بعد ذلك تسليم العلاقات التي يتم تمييزها على أنها منحازة إلى صانعي القرار للحكم على الدخل اللاحق.