في حين أظهرت نماذج اللغة المحددة مسببة اللغات متعددة اللغات (LMS) بشكل جيد على لغة واحدة إمكانات نقل مهمة متبادلة كبيرة، لا تزال هناك فجوة في الأداء الواسعة في مهام التحليل الدلالي عند توفر إشراف اللغة المستهدف.في هذه الورقة، نقترح طريقة رواية ترجمية وملء (TAF) لإنتاج بيانات تدريبية فضية لمحلل دلالي متعدد اللغات.تبسط هذه الطريقة خط أنابيب المحاذاة المشهورة للمحاذاة (انقر) وتتكون من نموذج حشو تسلسل إلى تسلسل يبني تحليل كامل مشروط على الكلام وعرض نفس التحليل.يتم تدريب الحشو لدينا على بيانات اللغة الإنجليزية فقط ولكن يمكن أن تكمل بدقة مثيلات بلغات أخرى (I.E.، ترجمات كلمات التدريب على اللغة الإنجليزية)، في أزياء صفرية بالرصاص.النتائج التجريبية على ثلاث مجموعات بيانات تحليل دلالية متعددة اللغات تظهر أن تكبير البيانات مع TAV يصل إلى دقة تنافسية مع أنظمة مماثلة تعتمد على تقنيات المحاذاة التقليدية.