في السنوات الأخيرة، الأعمال التجارية العالمية في المناقشات عبر الإنترنت وتقاسم الرأي حول وسائل التواصل الاجتماعي مزدهرة. وبالتالي، يقترح ذلك مهمة التنبؤ بإعادة الدخول لمساعدة الناس على تتبع المناقشات التي يرغبون في الاستمرار فيها. ومع ذلك، فإن الأعمال الحالية تركز فقط على استغلال سجلات الدردشة ومعلومات السياق، وتجاهل إشارات التعلم المفيدة المحتملة بيانات المحادثة الأساسية، مثل أنماط موضوع المحادثة والمشاركة المتكررة للمستخدمين المستهدفين، والتي تساعد على فهم سلوك المستخدمين المستهدفين بشكل أفضل في المحادثات. في هذه الورقة، نقترح ثلاثة مهام مساعدة مثيرة للاهتمام وأسس بشكل جيد، وهي نمط انتشار، المستخدم المستهدف المتكرر، وتحويل التأتجل، كإشارات الإشراف ذاتيا لإعادة التنبؤ بالدخول. يتم تدريب هذه المهام الإضافية مع المهمة الرئيسية بطريقة متعددة المهام. تظهر النتائج التجريبية على مجموعة بيانات يتم جمعها حديثا من Twitter و Reddit أن أسلوبنا تتفوق على الحالة السابقة من الفنون السابقة مع عدد أقل من المعلمات والتقارب الأسرع. تظهر تجارب وتحليل مستفيضة فعالية نماذجنا المقترحة وأشير أيضا إلى بعض الأفكار الرئيسية في تصميم المهام ذات الإشراف على الذات.