نماذج لغة محول كبيرة مدربة مسبقا، والتي تكون منتشرة في مهام معالجة اللغة الطبيعية، تكون مكلفة للغاية للتدريب. لتقليل تكلفة التدريب هذه النماذج الكبيرة، طورت العمل السابق طرزا أصغر وأكثر ضغطا تحقق تسريعا كبيرا في وقت التدريب مع الحفاظ على دقة تنافسية للنموذج الأصلي على مهام المصب. على الرغم من أن هذه النماذج الصغيرة المدربة مسبقا تم اعتمادها على نطاق واسع من قبل المجتمع، إلا أنه ليس معروفا مدى جودة معايرة مقارنة بنظيراتهم الأكبر. في هذه الورقة، مع التركيز على مجموعة واسعة من المهام، يمكننا التحقيق بدقة في خصائص المعايرة للمحولات المدربين مسبقا، كدالة لحجمها. نوضح أنه عند تقييم النماذج داخل المجال، تكون النماذج الصغيرة قادرة على تحقيق معايرة تنافسية وغالبا ما تكون أفضل، مقارنة بالنماذج الكبيرة، مع تحقيق تسريع كبير في وقت التدريب. تقنيات المعايرة بعد المخصص تقلل من خطأ المعايرة لجميع النماذج في المجال. ومع ذلك، عند تقييم النماذج الكبيرة التي تم تقييمها، تميل النماذج الكبيرة إلى أن تكون معايرة أفضل، وتعويض التسمية بدلا من ذلك استراتيجية فعالة لمعايرة النماذج في هذا الإعداد.