APGN: شبكات توليد الخصومة والمعلمة لتخليص التبعية المتعدد المصدر


الملخص بالعربية

بفضل القدرة التعليمية القوية للتعلم التعلم العميق، خاصة تقنيات ما قبل التدريب مع فقدان نموذج اللغة، حققت تحليل التبعية دفعة كبيرة في الأداء في السيناريو داخل المجال مع بيانات التدريب المسمى الوفيرة للمجالات المستهدفة. ومع ذلك، يتعين على مجتمع التحليل مواجهة الإعداد الأكثر واقعية حيث ينخفض ​​أداء التحليل بشكل كبير عند وجود البيانات المسمى فقط لعدة مجالات خارجية ثابتة. في هذا العمل، نقترح نموذجا جديدا لتحليل التبعية عبر المصدر متعدد الاستخدامات. يتكون النموذج من مكونين، I.E.، شبكة توليد المعلمة لتمييز الميزات الخاصة بالمجال، وشبكة خصومة لتعلم التمثيلات الثابتة للمجال. تظهر التجارب في مجموعة بيانات NLPCC-2019 التي تم إصدارها مؤخرا لمحافلات التبعية متعددة المجال أن طرازنا يمكن أن يحسن باستمرار أداء أداء تحليل المجال عبر النطاق بنقطة حوالي 2 نقطة في دقة المرفقات المسمى (LAS) عبر خطوط خطوط خطوط قوية محسنة من بيرت. يتم إجراء تحليل مفصل للحصول على المزيد من الأفكار حول مساهمات المكونين.

المراجع المستخدمة

https://aclanthology.org/

تحميل البحث