الحوار المرئي صعبا لأنه يحتاج إلى الإجابة على سلسلة من الأسئلة المتماسكة بناء على فهم البيئة المرئية. كيفية الأرض الكائنات المرئية ذات الصلة هي واحدة من المشاكل الرئيسية. تستخدم الدراسات السابقة السؤال والتاريخ للحضور في الصورة وتحقيق أداء مرضي، في حين أن هذه الطرق ليست كافية لتحديد الكائنات المرئية ذات الصلة دون أي إرشادات. يحظر التأريض غير المناسب للكائنات المرئية أداء نماذج الحوار المرئي. في هذه الورقة، نقترح نهجا جديدا لتعلم الكائنات المرئية البرية للحوار المرئي، والذي يستخدم آلية تأريض كائنات مرئية جديدة حيث يتم استخدام كل من التوزيعات السابقة والخلفية على الكائنات المرئية لتسهيل التأريض البصرية. على وجه التحديد، يتم استنتاج التوزيع الخلفي على الكائنات المرئية من كل من السياق (التاريخ والأسئلة) والأجوبة، وتضمن التأريض المناسب للأشياء المرئية أثناء عملية التدريب. في هذه الأثناء، يتم استخدام توزيع مسبق، الذي يستنتج من السياق فقط، لتقريب التوزيع الخلفي بحيث يمكن أن تكون الكائنات المرئية المناسبة هي التأريض حتى بدون إجابات أثناء عملية الاستدلال. النتائج التجريبية على مجموعة بيانات V0.9 و V1.0 Visdial تثبت أن نهجنا يحسن النماذج القوية السابقة في كل من الإعدادات الإدارية والتمييزية من خلال هامش هامش.