يهدف استخراج العاطفة (ECE) إلى استخراج الأسباب وراء المشاعر المعينة في النص. تم نشر بعض الأعمال المتعلقة بمهمة اللجنة الاقتصادية لأوروبا وجذب الكثير من الاهتمام في السنوات الأخيرة. ومع ذلك، فإن هذه الطرق تهمل قضايا رئيسيتين: 1) دفع عدد قليل من الانتباه لتأثير معلومات السياق على مستوى المستند على اللجنة الاقتصادية لأوروبا، و 2) عدم وجود استكشاف كاف لكيفية استخدام بند العاطفة المشروح بفعالية. بالنسبة للقضية الأولى، نقترح شبكة انتباه هرمية ثنائية الاتجاه (BHA) المقابلة للمرشح المحدد يسبب البحث عن سياق مستوى المستند في المستند بطريقة منظمة وديناميكية. بالنسبة للقضية الثانية، نقوم بتصميم وحدة تصفية عاطفية (EF) لكل طبقة من شبكة انتباه الرسوم البيانية، والتي تحسب درجة البوابة بناء على جملة العاطفة لتصفية المعلومات غير ذات الصلة. الجمع بين BHA و EF، يمكن ل EF-BHA أن يكتسب ديناميكيا المعلومات السياقية من اتجاهين وفلاتر المعلومات غير ذات صلة. توضح النتائج التجريبية أن EF-BHA يحقق العروض التنافسية على مجموعة بيانات عامة بلغات مختلفة (الصينية والإنجليزية). علاوة على ذلك، نحدد تأثير السياق على استخراج السبب العاطفي وتوفير تصور التفاعلات بين المرشح يسبب البنود والسياقات.