ينطوي تقسيم الجملة تجزئة جملة إلى جملتين أقصرين أو أكثر. إنه مكون رئيسي لبسط الجملة، وقد ثبت أن تساعد الفهم البشري وهي خطوة مسبقة مسبقة مسبقة مفيدة لمهام NLP مثل استخراج التلخيص والعلاقات. في حين أن العديد من الطرق والجماعات البيانات المقترحة قد اقترحت لتطوير نماذج تقسيم الجملة، فقد تم إيلاء القليل من الاهتمام لكيفية تفاعل تقسيم الجملة مع هيكل الخطاب. في هذا العمل، نركز على الحالات التي يحتوي فيها نص الإدخال على اتصال خطاب، والتي نشير إليها كقامة عقوبة قائمة على الخطاب. نقوم بإنشاء مجموعات بيانات صناعية وعضوية لتقسيم الخطاب واستكشاف طرق مختلفة للجمع بين مجموعات البيانات هذه باستخدام بنية نموذجية مختلفة. نظهر أن نماذج خطوط الأنابيب التي تستخدم هيكل الخطاب للتوسط في جملة تقسيم النماذج المنفقة المناسبة في تعلم الطرق المختلفة للتعبير عن علاقة خطاب ولكن توليد نص أقل نحوية؛ توفر تلك البيانات الاصطناعية على نطاق واسع أساسا أفضل للتعلم من البيانات العضوية النطاق الصغيرة؛ وهذا التدريب على التركيز على الخطاب، وليس على بيانات تقسيم الجملة العامة يوفر أساسا أفضل لتقسيم الخطاب.