تصف هذه الورقة Simplener، وهو نموذج تم تطويره لمهمة تبسيط الجملة في GEM-2021.نظامنا عبارة عن بنية محولات SEQ2SEQ أحادية مونولجة تستخدم الرموز المراقبة معلقة مسبقا إلى البيانات، مما يسمح للنموذج بتشكيل التبسيط الذي تم إنشاؤه وفقا للسمات التي تريدها المستخدم.بالإضافة إلى ذلك، نظهر أن البيانات التدريبية NER - بيانات التدريب قبل الاستخدام يساعد على تثبيت تأثير الرموز السيطرة وتحسين الأداء العام للنظام بشكل كبير.ونحن نوظف أيضا embeddings المسبق للحد من البيانات الخاصة بالبيانات والسماح للنموذج بإنتاج المزيد من النواتج القابلة للتعميم.