تصف هذه الورقة التقديم من قبل Nuig-DSI إلى Benchmark GEM 2021. نشارك في المهمة المشتركة النمذجة حيث نقدم مخرجات على أربع مجموعات بيانات للجيل إلى النص، وهي DART، WEBNLG (EN)، E2E و COMMINGEN.نتبع النهج الذي يشبه الواحدة الموصوفة في الورق القياسي GEM حيث نستخدم النموذج T5-Base المدرب مسبقا لتقديمنا.نحن ندرب هذا النموذج على بيانات أحادية الذهاب إضافية حيث نقوم بتجربة استراتيجيات اخفاء مختلفة تركز على وجه التحديد على كيانات إخفاء، وتندب المفاهيم وكذلك استراتيجية إخفاء عشوائية للتدريب المسبق.في نتائجنا، نجد أن الاخفاء العشوائي يؤدي الأفضل من حيث مقاييس التقييم التلقائي، على الرغم من أن النتائج ليست مختلفة بشكل كبير مقارنة باستراتيجيات اخفاء أخرى.