لا يزال مخصصات المجال في التحليل النحوي تحديا كبيرا.نحن نعلم مسألة عدم توازن البيانات بين النطاق داخل المجال والخروج من النطاق يستخدم عادة للمشكلة.نحدد تكيف النطاق كمشكلة تعليمية متعددة المهام (MTL)، والتي تتيح لنا تدريب اثنين من المحللين، واحدة لكل منها الرئيسية.تظهر نتائجنا أن نهج MTL مفيد لنقش Treebank الأصغر.بالنسبة لأكبر Treebank، نحتاج إلى استخدام وزن الخسارة من أجل تجنب انخفاض في الأداء المهمة الفردية.من أجل تحديد درجة توهت البيانات، فإن اختلال البيانات بين مجطتين واختلافات المجال تؤثر على النتائج، ونحن نقوم أيضا بتجربة اثنين من Treebanks غير المتوازن داخل المجال وإظهار أن وزن الخسارة يحسن أيضا الأداء في إعداد المجال.نظرا لارتداء الخسارة في MTL، يمكننا تحسين النتائج لكل من المحللين.