في الإجابة على الأسئلة المفتوحة للنطاق، أصبح استرجاع المقطع الكثيف نموذجا جديدا لاسترداد الممرات ذات الصلة لإيجاد الإجابات. عادة ما يتم اعتماد بنية التشفير المزدوجة لتعلم تمثيلات كثيفة من الأسئلة والممرات للمطابقة الدلالية. ومع ذلك، من الصعب تدريب تشفير مزدوج بشكل فعال بسبب التحديات بما في ذلك التناقض بين التدريب والاستدلال، ووجود إيجابيات غير محدودة وبيانات تدريب محدودة. لمعالجة هذه التحديات، نقترح نهج تدريبي محسن، يسمى Rocketqa، لتحسين استرجاع الممر الكثيف. نجعل ثلاث مساهمات تقنية رئيسية في Rocketqa، وهي السلبيات عبر الدفعة، السلبيات الصلبة الشاقة وزعم البيانات. تظهر نتائج التجربة أن Rocketqa تتفوق بشكل كبير على النماذج السابقة من بين الفنادق السابقة على كل من MSMARCO والأسئلة الطبيعية. نقوم أيضا بإجراء تجارب مكثفة لفحص فعالية الاستراتيجيات الثلاث في Rocketqa. علاوة على ذلك، نوضح أن أداء ضمان الجودة المناسبة يمكن تحسينه بناء على مسترد Rocketqa لدينا.