يهدف تصحيح الخطأ النحوي (GEC) إلى تصحيح أخطاء الكتابة ومساعدة المتعلمين في اللغة على تحسين مهاراتهم في الكتابة. ومع ذلك، تميل نماذج GEC الحالية إلى إنتاج تصحيحات زائفة أو تفشل في اكتشاف الكثير من الأخطاء. يعد نموذج تقدير الجودة ضروريا لضمان أن يحصل المتعلمون على نتائج GEC دقيقة وتجنب مضللة من الجمل المصححة بشكل سيء. يمكن أن تولد نماذج GEC المدربة جيدا العديد من الفرضيات عالية الجودة من خلال فك التشفير، مثل البحث الشعاع، والتي توفر أدلة GEC القيمة ويمكن استخدامها لتقييم جودة GEC. ومع ذلك، تهمش النماذج الحالية أدلة GEC المحتملة من فرضيات مختلفة. تقدم هذه الورقة شبكة التحقق العصبية (Vernet) لتقدير جودة GEC مع فرضيات متعددة. تحدد Vernet تفاعلات بين الفرضيات مع رسم بياني للمنطق وإجراء نوعين من آليات الاهتمام لنشر أدلة GEC للتحقق من جودة الفرضيات التي تم إنشاؤها. تظهر تجاربنا على أربع مجموعات بيانات GEC أن Vernet يحصل على أداء اكتشاف الأخطاء النحوية الحديثة، وتحقق أفضل نتائج تقدير الجودة، وتحسين أداء GEC بشكل كبير من خلال فرضيات إعادة النشر. تتوفر جميع رموز البيانات والمصادر في https://github.com/thunlp/vernet.