يركز البحث في مجال المنطق الحالي على تطوير النماذج التي تستخدم معرفة المنطقية للإجابة على أسئلة متعددة الخيارات. ومع ذلك، قد لا تكون النظم المصممة للإجابة على أسئلة متعددة الخيارات مفيدة في التطبيقات التي لا توفر قائمة صغيرة من إجابات المرشحين للاختيار من بينها. كخطوة نحو جعل البحث منطق المنطقي أكثر واقعية، نقترح دراسة مسطحة المنطقية المفتوحة العضوية (OPENCSR) --- مهمة الإجابة على سؤال المنطقي دون أي اختيارات محددة مسبقا --- استخدام كموارد فقط حقائق المنطقية مكتوبة باللغة الطبيعية. OpenCSR تحديا بسبب مساحة قرارات كبيرة، ولأن العديد من الأسئلة تتطلب منطق متعدد القفز الضمني. كنعجا من OpenCSR، نقترح نماذج شديدة الفضلة للمناسبة متعددة القفز بشأن حقائق المعرفة. لتقييم أساليب OpenCSR، نقوم بتكييف العديد من معايير المنطق المنطقية الشائعة، وجمع إجابات جديدة متعددة لكل سؤال اختبار عبر مصادر الحشد. تظهر التجارب أن DrFact تفوق أساليب أساسية قوية من قبل هامش كبير.