قراء قراء أوراق البحث الأكاديمي غالبا ما يقرؤون بهدف الإجابة على أسئلة محددة. يمكن للإجابة على الأسئلة التي يمكن أن ترد على هذه الأسئلة إجراء استهلاك المحتوى أكثر كفاءة بكثير. ومع ذلك، فإن بناء هذه الأدوات يتطلب بيانات تعكس صعوبة المهمة الناشئة عن التفكير المعقد حول المطالبات المقدمة في أجزاء متعددة من الورقة. في المقابل، تحتوي الأسئلة الحالية على المعلومات المتعلقة بالمعلومات الرد على مجموعات البيانات عادة أسئلة حول المعلومات العامة من النوع العامل. لذلك نحن نقدم QASPER، مجموعة بيانات من 5049 سؤالا أكثر من 1585 ورقة معالجة اللغة الطبيعية. يتم كتابة كل سؤال بممارس NLP الذي قرأ فقط عنوان وإجراء ملخص للورقة المقابلة، والسؤال يسعى للحصول على معلومات موجودة في النص الكامل. ثم تتم الإجابة على الأسئلة من قبل مجموعة منفصلة من ممارسين NLP الذين يقدمون أيضا الأدلة الداعمة للإجابات. نجد أن النماذج الحالية التي تعمل بشكل جيد على مهام ضمان الجودة الأخرى لا تؤدي بشكل جيد في الإجابة على هذه الأسئلة، وأيضا الأد من البشر بنسبة 27 نقطة على الأقل عند الإجابة عليها من الأوراق بأكملها، تحفز المزيد من الأبحاث في الوثائق التي تأسست، حيث تسعى للحصول على المعلومات، والتي تم تصميم DataSet لدينا لتسهيل.