أثبتت الترجمة الآلية النموذجية على مستوى المستند (NMT) أنها ذات قيمة عميقة لفعاليتها في التقاط المعلومات السياقية. ومع ذلك، فإن الأساليب الحالية 1) تعرض ببساطة تمثيل أحكام السياق دون تمييز عملية التفكير بين الجملة؛ و 2) تغذية السياقات المستهدفة في الحقيقة كدخلات إضافية في وقت التدريب، وبالتالي تواجه مشكلة تحيز التعرض. ونحن نقترب من هذه المشاكل مع إلهام من السلوك البشري - المترجمين البشري يظهر عادة مشروع ترجمة في أذهانهم وتنقيحها تدريجيا وفقا للمنطق في الخطاب. تحقيقا لهذه الغاية، نقترح محول رواية متعددة القفز (MHT) الذي يوفر قدرات NMT على نموذج عملية التحرير والتفكير الذي يشبه الإنسان بشكل صريح. على وجه التحديد، يخدم نموذجنا الترجمة على مستوى الجملة كمسودة ويحدد خصوصياتها بشكل صحيح من خلال حضور جمل متعددة غير متجانسة تكرارا. توضح التجارب على أربعة مهام ترجمة مستندات مستعملة على نطاق واسع أن طريقتنا يمكن أن تحسن بشكل كبير من أداء الترجمة على مستوى المستندات ويمكنها معالجة ظواهر الخطاب، مثل خطأ COMARACARE ومشكلة Polysemy.