شرح نماذج الشبكة العصبية مهمة لزيادة جدورث بالثقة في تطبيقات العالم الحقيقي. توليد معظم الأساليب الموجودة تفسيرات ما بعد الهخص لنماذج الشبكة العصبية من خلال تحديد وسمات الميزات الفردية أو الكشف عن التفاعلات بين الميزات المجاورة. ومع ذلك، بالنسبة للنماذج التي تحتوي على أزواج نصية كدخلات (على سبيل المثال، التعريف بإعادة صياغة التعريف)، فإن الأساليب الموجودة ليست كافية لالتقاط تفاعلات الميزات بين نصين وتمديدها البسيط لحساب جميع تفاعلات Word-Beach بين نصفي غير فعال. في هذا العمل، نقترح طريقة Group Mask (GMASK) لتكتشف ضمنيا علاقات الكلمات من خلال تجميع الكلمات المرتبطة من زوج إدخال الإدخال معا وقياس مساهمتها في مهام NLP المقابلة ككل. يتم تقييم الطريقة المقترحة مع اثنين من بنية نموذجية مختلفة (نموذج الاهتمام للتحلل) عبر أربع مجموعات بيانات، بما في ذلك الاستدلال اللغوي الطبيعي وإعادة صياغة مهام التعريف. تظهر التجارب فعالية Gmask في توفير تفسيرات مخلصة لهذه النماذج.