تشخيص شبكات تشفيرية لتحديد السببية الحدث مع هياكل مستوى الوثائق الغنية


الملخص بالعربية

ندرس مشكلة تحديد السببية الحدث (ECI) للكشف عن العلاقة السببية بين الحدث تذكر أزواج في النص. على الرغم من أن نماذج التعلم العميق أظهرت مؤخرا الأداء الحديثة من أجل ECI، إلا أنها تقتصر على إعداد الجملة حيث يتم تقديم الحدث أزواج في نفس الجمل. يعالج هذا العمل هذه المشكلة من خلال تطوير نموذج تعليمي عميق جديد لبيئة المستوى ECI (DECI) لقبول حدث ما بين الجملة. على هذا النحو، نقترح نموذجا أساسيا في الرسم البياني يبني الرسوم البيانية التفاعلية لالتقاط الاتصالات ذات الصلة بين الكائنات المهمة ل DECI في مستندات الإدخال. ثم يتم بعد ذلك استهلاك رسوم الرسوم البيانية للتفاعل من قبل الشبكات التنافسية الرسمية لتعلم التمثيلات المعززة في المستندات للتنبؤ السببية بين الأحداث. يتم تقديم مصادر المعلومات المختلفة لإثراء الرسوم البيانية التفاعلية ل DECI، والتي تتميز بخطاب، بناء الجملة، والمعلومات الدلالية. تظهر تجاربنا الواسعة أن النموذج المقترح يحقق أداء حديثة في مجموعات بيانات قياسية.

المراجع المستخدمة

https://aclanthology.org/

تحميل البحث