يحتوي نموذج HIAGM النموذجي الحالي على تصنيف النص التسلسل الهرمي وجود قيودان. أولا، يربط كل نموذج نصي مع جميع الملصقات في DataSet التي تحتوي على معلومات غير ذات صلة. ثانيا، لا ينظر في أي عائق إحصائي على تمثيلات التسمية المستفادة من تشفير الهيكل، في حين ثبت أن القيود المفروضة على تعلم التمثيل أنها مفيدة في العمل السابق. في هذه الورقة، نقترح HTCINFOMAX لمعالجة هذه المشكلات عن طريق إدخال تعظيم المعلومات التي تتضمن وحدتي: تعظيم المعلومات المتبادلة النصية وتسمية التسمية مطابقة مسبقة. الوحدة النمطية الأولى يمكن أن تصمم التفاعل بين كل نموذج نصية وتسميات الحقيقة الأرضية صراحة التي تتصفح المعلومات غير ذات الصلة. والثاني يشجع تشفير الهيكل على تعلم تمثيلات أفضل مع الخصائص المرجوة لجميع الملصقات التي يمكن أن تتعامل بشكل أفضل مع عدم توازن العلامة في تصنيف النص الهرمي. النتائج التجريبية على اثنين من مجموعات البيانات القياسية توضح فعالية HTCINFOMAX المقترحة.