التحدي الرئيسي في أبحاث أنظمة الحوار هو التكيف بشكل فعال وكفاءة مع مجالات جديدة. يتطلب نموذجا قابل للتطوير للتكيف تطوير النماذج التعميمية التي تؤدي بشكل جيد في إعدادات قليلة. في هذه الورقة، نركز على مشكلة تصنيف النية التي تهدف إلى تحديد نوايا المستخدمين المعطاة الكلام الموجهة إلى نظام الحوار. نقترح اقترابين لتحسين تعميم نماذج تصنيف الكلام: (1) مراقبون و (2) تدريب على سبيل المثال لقد أظهر العمل السابق أن النماذج التي تشبه بيرت تميل إلى تنسيق مبلغ كبير من الاهتمام ل [CLS] الرمز المميز، والتي نفترض النتائج في تمثيلات مخففة. المراقبون هم الرموز التي لا تحضرها، وهي بديل من رمزية [CLS] كتمثيل دلالي للكلمات. يتعلم التدريب على سبيل المثال أن تصنف الكلام من خلال مقارنة بالأمثلة، وبالتالي استخدام التشفير الأساسي كنموذج تشابه الجملة. هذه الأساليب مكملة؛ إن تحسين التمثيل من خلال المراقبين يسمحون بالنموذج الذي يحركه المثال إلى تحسين أوجه تشابه الجملة. عند دمجها، فإن الأساليب المقترحة تحقق نتائج أحدث نتائج من ثلاث مجموعات من مجموعات بيانات التنبؤ النية (Banking77، CLINC150، HWU64) في كلا البيانات الكاملة وإعدادات قليلة (10 أمثلة لكل نية). علاوة على ذلك، نوضح أن النهج المقترح يمكن أن ينقل إلى النوايا الجديدة وعبر مجموعات البيانات دون أي تدريب إضافي.