تعتمد معالجة شفرة المصدر بشكل كبير على الأساليب المستخدمة على نطاق واسع في معالجة اللغة الطبيعية (NLP)، ولكنها تنطوي على تفاصيل يجب مراعاتها في الاعتبار لتحقيق جودة أعلى.مثال على هذا الخصوصية هو أن دلالات متغير محددة ليس فقط باسمها ولكن أيضا من خلال السياقات التي يحدث فيها المتغير.في هذا العمل، نطور embeddings الديناميكي، وهي آلية متكررة تضبط الدلالات المستفادة للمتغير عند حصولها على مزيد من المعلومات حول دور المتغير في البرنامج.نظهر أن استخدام المدينات الديناميكية المقترحة يحسن بشكل كبير من أداء الشبكة العصبية المتكررة، في إكمال التعليمات البرمجية ومهام إصلاح الأخطاء.