التعلم الإشرافه يفترض أن ملصق الحقيقة الأرض موجود.ومع ذلك، فإن موثوقية هذه الحقيقة الأرضية تعتمد على المنشآت البشرية، التي لا توافق في كثير من الأحيان.وقد أظهر العمل السابق أن هذا الخلاف يمكن أن يكون مفيدا في نماذج التدريب.نقترح طريقة جديدة لدمج هذا الخلاف كمعلومات: بالإضافة إلى حساب الأخطاء القياسي، نستخدم التسميات الناعمة (أي توزيعات الاحتمالات على الملصقات Annotator) كملقمة مساعدة في شبكة عصبية متعددة المهام.نقيس الاختلاف بين التنبؤات والملصقات الناعمة المستهدفة مع العديد من وظائف الخسائر وتقييم النماذج على مهام NLP المختلفة.نجد أن المهمة الإضافية للتنبؤ بالعلامة الناعمة تقلل من عقوبة الأخطاء بشأن الكيانات الغامضة، وبالتالي تخفف من التجول.يحسن بشكل كبير الأداء عبر المهام، بما يتجاوز النهج القياسي والعمل السابق.