تحسين نموذج التحليل العصبي RST مع اتفاقية الفضة


الملخص بالعربية

تستند معظم طرق تحليل البنية الخطابية السابقة (RST) إلى التعلم الخاضع للإشراف مثل الشبكات العصبية، والتي تتطلب وجعة مشروح من الحجم والجودة الكافية. ومع ذلك، فإن Treebank Treebank RST RST (RST-DT)، والجورباس القياسي للحل الصادر باللغة الإنجليزية، وهو صغير بسبب التعليق التوضيحي بشكل مكلف للأشجار الأولى. عدم وجود بيانات تدريبية كبيرة مشروحة تسبب أداء ضعيف خاصة في العلامات المتعلقة بالعلامات. لذلك، نقترح طريقة لتحسين نماذج التحليل العصبي RST من خلال استغلال البيانات الفضية، أي البيانات المشروحة تلقائيا. نقوم بإنشاء بيانات فضية واسعة النطاق من Corpus غير المستمر باستخدام محلل دائري للحكومة الأولى. للحصول على بيانات فضية عالية الجودة، نستخلص من الاتفاقية من الأشجار الأولى للوثائق التي تم بناؤها باستخدام المحللين RST. بعد ذلك، قم بتدريب المحلل الوراثي العصبي مع البيانات الفضية التي تم الحصول عليها وضبطها بشكل جيد على RST-DT. تظهر النتائج التجريبية أن طريقتنا حققت أفضل درجات Micro-F1 للأرضيات القومية والعلاقة عند 75.0 و 63.2 على التوالي. علاوة على ذلك، حصلنا على مكاسب ملحوظة في درجة العلاقة، 3.0 نقطة، ضد المحللين السابقين من الحديثة.

المراجع المستخدمة

https://aclanthology.org/

تحميل البحث