الأساليب السابقة لتجزئة النص هي في الغالب على مستوى الرمز المميز.على الرغم من الكفاية، تحد هذه الطبيعة من إمكاناتها الكاملة لالتقاط التبعيات طويلة الأجل بين القطاعات.في هذا العمل، نقترح إطارا جديدا يزدر أدرج جمل اللغة الطبيعية في مستوى القطاع.لكل خطوة في تجزئة، يعترف الجزء الأكبر في أقصى اليسار من التسلسل المتبقي.تنطوي التطبيقات على تقنية LSTM-ناقص لبناء تمثيل العبارات والشبكات العصبية المتكررة (RNN) لنموذج تكرارات تحديد الأقصى اليمنى.لقد أجرينا تجارب واسعة النطاق على العلامات على الجزء العلوي من قطع البيانات والصينية (POS) عبر 3 مجموعات من مجموعات البيانات، مما يدل على أن أساليبنا تتفوق بشكل كبير على جميع خطوط الأساس السابقة وحققت نتائج جديدة من الفنادق الجديدة.علاوة على ذلك، فإن التحليل النوعي والدراسة حول تجزئة الجمل الطويلة الطويلة تحقق من فعاليته في نمذجة التبعيات طويلة الأجل.