على الرغم من أن بعض الأعمال الحديثة تظهر التكامل المحتمل بين مختلف الأنظمة الحديثة، إلا أن القليل من الأعمال تحاول التحقيق في هذه المشكلة في تلخيص نص. يشير الباحثون في مجالات أخرى عادة إلى تقنيات إعادة تأهب أو تكديس الاقتراب من هذه المشكلة. في هذا العمل، نسلط الضوء على العديد من القيود للطرق السابقة، مما يحفزنا على تقديم عداء إطاري جديد يوفر وجهة نظر موحدة لتلخيص النص وركز الملخصات. تجريفيا، نقوم بإجراء تقييم شامل يتضمن أنظمة أساسية عشرين وأربعة مجموعات بيانات، وثلاثة سيناريوهات تطبيق مختلفة. إلى جانب نتائج جديدة من أحدث النتائج على DataSet CNN / DailyMail (46.18 Rouge-1)، فإننا نوضح أيضا كيف تتناول طريقةنا المقترحة قيود الطرق التقليدية وفعالية طراز Refactor Sheds الضوء على البصيرة تحسين. يمكن استخدام نظامنا مباشرة من قبل الباحثين الآخرين كأداة خارجية لتحقيق تحسينات أداء إضافية. نحن نفتح المصدر كل الكود وتقديم واجهة مريحة لاستخدامها: https://github.com/yixinl7/refactoring-summarization.