Deventangling Semantics و Paintax في تضمين الجملة مع نماذج اللغة المدربة مسبقا مسبقا


الملخص بالعربية

حققت نماذج اللغة المدربة مسبقا نجاحا كبيرا على مجموعة واسعة من مهام NLP. ومع ذلك، فإن التمثيلات السياقية من النماذج المدربة مسبقا تحتوي على معلومات دلالية ومتنامية متشابكة، وبالتالي لا يمكن استخدامها مباشرة لاستخلاص مدينات جملة دلالية مفيدة لبعض المهام. تقدم أزواج إعادة صياغة طريقة فعالة لتعلم التمييز بين الدلالات وبناء الجملة، حيث أنهم يشاركون بشكل طبيعي دلالات وغالبا ما يختلف في بناء جملة. في هذا العمل، نقدم Parabart، وهي جملة دلالية تضمين نموذج يتعلم تكديح دلالات ودليل بناء الجملة في مذكرات الجملة التي تم الحصول عليها بواسطة نماذج اللغة المدربة مسبقا. يتم تدريب PARABART على إجراء إعادة صياغة موجهة إلى بناء الجملة، استنادا إلى جملة مصدر تشترك في الدلالات مع إعادة صياغة الهدف، وشجرة تحليل تحدد بناء الجملة المستهدف. وبهذه الطريقة، يتعلم بارابارت تعليم التمثيل الدلالي والمنظمات النحوية من مدخلاتها مع تشفير منفصلة. تبين التجارب باللغة الإنجليزية أن بارابارت تتفوق على الأحكام التي تضم نماذج تضمينها على مهام التشابه الدلالي غير المعدل. بالإضافة إلى ذلك، نظير على أن نهجنا يمكن أن يؤدي إلى إزالة المعلومات النحوية بشكل فعال من تضمين الجملة الدلالية، مما يؤدي إلى متانة أفضل ضد الاختلاف النحوي على المهام الدلالية المصب.

المراجع المستخدمة

https://aclanthology.org/

تحميل البحث