QA-GNN: التفكير مع نماذج اللغة ورسم الرسوم البيانية المعرفة للحصول على السؤال الرد


الملخص بالعربية

تعرض مشكلة الإجابة على الأسئلة التي تستخدم المعرفة من طرازات اللغة المدربة مسبقا (LMS) ورسم الرسوم البيانية المعرفة (KGS) تحديين: بالنظر إلى سياق ضمان الجودة (اختيار الأسئلة والأجوبة)، فإن الأساليب تحتاج إلى (I) تحديد المعرفة ذات الصلة من KGS الكبيرة،و (2) أداء التفكير المشترك في سياق ضمان الجودة و KG.هنا نقترح نموذجا جديدا، QA-GNN، الذي يتناول التحديات المذكورة أعلاه من خلال ابتكارات رئيسيتين: (ط) تسجيل الملاءمة، حيث نستخدم LMS لتقدير أهمية عقد KG بالنسبة إلى سياق ضمان الجودة المحدد، و (2) مشتركالتفكير، حيث نتواصل مع سياق ضمان الجودة و KG لتشكيل رسم بياني مشترك، وتحديث خصائصها المتبادلة من خلال رسالة الرسوم البيانية القائمة على الرسم البياني.نقوم بتقييم QA-GNN على مجموعات بيانات Commonsenseenseqa و OpenBookqa، وإظهار تحسنها على نماذج LM و LM + KG الحالية، وكذلك قدرتها على أداء التفكير القابل للتفسير والمنظم، على سبيل المثال، المناولة الصحيحة في الأسئلة.

المراجع المستخدمة

https://aclanthology.org/

تحميل البحث